scholarly journals Surface Heat Fluxes in the Western Equatorial Pacific Ocean Estimated by Bulk Parameterization and by an Inverse Mixed Layer Model

1997 ◽  
Vol 27 (11) ◽  
pp. 2477-2487 ◽  
Author(s):  
Yun He ◽  
Xiao-Hai Yan ◽  
W. Timothy Liu
1995 ◽  
Vol 13 (10) ◽  
pp. 1047-1053 ◽  
Author(s):  
N. C. Wells

Abstract. Estimates of the components of the surface heat flux in the Western Equatorial Pacific Ocean are presented for a 22-day period, together with a critical analysis of the errors. It is shown that the errors in latent heat, and solar and longwave radiation fluxes, dominate the net heat flux for this period. It is found that the net heat flux into the ocean over the 22-day period is not significantly different from zero. It is also demonstrated that because of the variability in daily averaged values of solar radiation and the latent heat of evaporation, a large number of independent flux measurements will be required to determine with confidence the climatological net heat flux in this region. The variability of latent fluxes over the 22-day period suggest that climatological estimates based on monthly mean observations may lead to a significant underestimate of the latent heat flux.


1997 ◽  
Vol 48 (5) ◽  
pp. 371 ◽  
Author(s):  
Philip H. Towler ◽  
J. David Smith

The residence time of particulate and dissolved 210Pb in the upper layer of the western equatorial Pacific Ocean is examined. Activities of dissolved 226Ra, dissolved and particulate 210Pb, and particulate 210Po were determined to a depth of 300 m in a series of depth profiles collected along a transect across the equator at 155˚E in November 1993. Total 210Pb in the surface water decreased from 2·7 Bq m-3 at 10˚N to 1·8 Bq m-3 at 10˚S. Dissolved 210Pb generally decreased with depth but showed subsurface (100–150 m) maxima at 10˚N and 5˚N. The nutrient concentrations at 300 m were highest at these stations, suggesting some degree of upwelling. Calculations indicate that the residence times of dissolved (<0·45 µm) and particulate (>0·45 µm) 210Pb in the top 300 m were 4·6–9·6 years and 0·15–0·29 year respectively.


2011 ◽  
Vol 68 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Robert van Driel ◽  
Harm J. J. Jonker

In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with different frequencies and amplitudes and study the response of the boundary layer in terms of transfer functions. To this end both a mixed layer model (MLM) and a large-eddy simulation (LES) model are used; the latter is used to evaluate the predictive quality of the mixed layer model. The mixed layer model performs generally quite well for slow changes in the surface heat flux and provides analytical understanding of the transfer characteristics of the boundary layer such as amplitude and phase lag. For rapidly changing surface fluxes (i.e., changes within a time frame comparable to the large eddy turnover time), it proves important to account for the time it takes for the information to travel from the surface to higher levels of the boundary layer such as the inversion zone. As a follow-up to a 1997 study by Sorbjan, who showed that the conventional convective velocity scale is inadequate as a scaling quantity during the decay phase, this paper addresses the issue of defining, in (generic) transitional situations, a velocity scale that is solely based on the surface heat flux and its history.


2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.


Sign in / Sign up

Export Citation Format

Share Document